
SSS Job Object Specification
Draft Release Version 3.0.4
18 JUL 2005

Scott Jackson, PNNL
David Jackson, Ames Lab

Brett Bode, Ames Lab

Scalable Systems Software Job Object Specification

Status of this Memo

This document describes the job object to be used by Scalable Systems Software
compliant components. It is envisioned for this specification to be used in conjunction
with the SSSRMAP protocol with the job object passed in the Data field of Requests and
Responses. Queries can be issued to a job-cognizant component in the form of modified
XPATH expressions to the Get field to extract specific information from the job object as
described in the SSSRMAP protocol.

Abstract

This document describes the syntax and structure of the SSS job object. A job model is
described that is flexible enough to support the specification of very simple jobs as well
as jobs with elaborate and complex specification requirements in a way that avoids
complex structures and syntax when it is not needed. The basic assumption is that a
solitary job specification should be usable for all phases of the job lifecycle and can be
used at submission, queuing, staging, reservations, quotations, execution, charging,
accounting, etc. This job specification provides support for multi-step jobs, as well as
jobs with disparate task descriptions. It accounts for operational requirements in a grid
or meta-scheduled environment where the job is executed by multiple hosts in different
administrative domains that support different resource management systems.

Table of Contents

Scalable Systems Software Job Object Specification..................... 1
Table of Contents.. 1
1. Introduction ... 3

1.1 Goals ... 3
1.2 Non-Goals ... 3
1.3 Examples... 4

1.3.1 Very Simple Example ... 4
1.3.2 Moderate Example .. 4
1.3.3 Elaborate Example .. 5

2. Conventions used in this document 7
2.1 Keywords .. 7

2.2 Table Column Interpretations ... 7
2.3 Element Syntax Cardinality .. 8

3. The Job Model ... 8
4. JobGroup Element ... 10

4.1 JobGroup Properties.. 10
4.1.1 Simple JobGroup Properties ... 11
4.1.2 Job ... 11
4.1.3 JobDefaults ... 11

5. Job and JobDefaults Element... 11
5.1 Job Properties.. 12

5.1.1 Simple Job Properties ... 12
5.1.1.1 ResourceLimit Element .. 16

5.1.2 Credentials .. 18
5.1.3 Environment Element ... 19

5.1.3.1 Variable Element .. 19
5.1.4 NodeList Element ... 19

5.1.4.1 Node Element.. 20
5.1.5 TaskDistribution Element ... 20
5.1.6 Dependency Element .. 20
5.1.7 Consumable Resources ... 21
5.1.8 Resource Element ... 23
5.1.9 NodeProperties Element ... 23

5.1.9.1 Node Properties... 24
5.1.10 Extension Element .. 24
5.1.11 TaskGroup... 25
5.1.12 TaskGroupDefaults ... 25

6. TaskGroup and TaskGroupDefaults Element...................... 25
6.1 TaskGroup Properties ... 26

6.1.1 Simple TaskGroup Properties ... 26
6.1.2 Task... 26
6.1.3 TaskDefaults ... 26

7. Task and TaskDefaults Element .. 27
7.1 Task Properties.. 27

7.1.1 Simple Task Properties ... 27
8. Property Categories ... 28

8.1 Requested Element.. 28
8.2 Delivered Element .. 30

9. AwarenessPolicy Attribute .. 31
10. References ... 32
Appendix A .. 33

Units of Measure Abbreviations ... 33

1. Introduction

This specification proposes a standard XML representation for a job object for use by the
various components in the SSS Resource Management System. This object will be used
in multiple contexts and by multiple components. It is anticipated that this object will be
passed via the Data Element of SSSRMAP Requests and Responses.

1.1 Goals

There are several goals motivating the design of this representation.

The representation needs to be inherently flexible. We recognize we will not be able to
exhaustively include the ever-changing job properties and capabilities that constantly
arise.

The representation should use the same job object at all stages of that job’s lifecycle. This
object will be used at job submission, queuing, scheduling, charging and accounting,
hence it may need to distinguish between requested and delivered properties.

The design must account for the properties and structure required to function in a meta or
grid environment. It needs to include the capability to support local mapping of
properties, global namespaces, etc.

The equivalent of multi-step jobs must be supported. Each step (job) can have multiple
logical task descriptions.

Many potential users of the specification will not be prepared to implement the complex
portions or fine-granularity that others need. There needs to be a way to allow the more
complicated structure to be added as needed while leaving more straightforward cases
simple.

There needs to be guidance for how to understand a given job object when higher order
features are not supported by an implementation, and which parts are required,
recommended and optional for implementers to implement.

It needs to support composite resources.

It should include the ability to specify preferences or fuzzy requirements.

1.2 Non-Goals

Namespace considerations and naming conventions for most property values are outside
of the scope of this document.

1.3 Examples

1.3.1 Very Simple Example

This example shows a simple job object that captures the requirements of a simple job.

<Job>
 <JobId>PBS.1234.0</JobId>
 <JobState>Idle</JobState>
 <UserId>scottmo</UserId>
 <Executable>/bin/hostname</Executable>
 <Processors>16</Processors>
 <WallDuration>3600</WallDuration>
</Job>

1.3.2 Moderate Example

This example shows a moderately complex job object that uses features such as required
versus delivered properties.

<Job>
 <JobId>PBS.1234.0</JobId>
 <JobName>Heavy Water</JobName>
 <ProjectId>nwchemdev</ProjectId>
 <UserId>peterk</UserId>
 <Application>NWChem</Application>
 <Executable>/usr/local/nwchem/bin/nwchem</Executable>
 <Arguments>-input basis.in</Arguments>
 <InitialWorkingDirectory>/home/peterk</InitialWorkingDirectory>
 <MachineName>Colony</MachineName>
 <QualityOfService>BottomFeeder</QualityOfService>

<Queue>batch_normal</Queue>
<JobState>Completed</JobState>

 <StartTime>1051557713</StartTime>
<EndTime>1051558868</EndTime>
<Charge>25410</Charge>
<Requested>

<Processors op=”GE”>12</Processors>
<Memory op=”GE” units=”GB”>2</Memory>
<WallDuration>3600</WallDuration>

 </Requested>
 <Delivered>
 <Processors>16</Processors>
 <Memory metric=”Average” units=”GB”>1.89</Memory>

<WallDuration>1155</WallDuration>
 </Delivered>
 <Environment>
 <Variable name=”PATH”>/usr/bin:/home/peterk</Variable>
 </Environment>
</Job>

1.3.3 Elaborate Example

This example uses a job group to encapsulate a multi-step job. It shows this protocol’s
ability to characterize complex job processing capabilities. A component that processes
this message is free to retain only that part of the information that it requires. Superfluous
information can be ignored by the component or filtered out (by XSLT for example).

<JobGroup>
 <JobGroupId>fr15n05.1234</JobGroupId>
 <JobGroupState>Active</JobGroupState>
 <JobGroupName>ShuttleTakeoff</JobGroupName>
 <JobDefaults>
 <StagedTime>1051557859</StagedTime>
 <SubmitHost>asteroid.lbl.gov</SubmitHost>
 <SubmissionTime>1051556734</SubmissionTime>
 <ProjectId>GrandChallenge18</ProjectId>
 <GlobalUserId>C=US,O=LBNL,CN=Keith Jackson</GlobalUserId>
 <UserId>keith</UserId>
 <Environment>
 <Variable name=”LD_LIBRARY_PATH”>/usr/lib</Variable>
 <Variable name=”PATH”>/usr/bin:~/bin:</Variable>
 <Environment>
 </JobDefaults>
 <Job>
 <JobId>fr15n05.1234.0</JobId>
 <JobName>Launch Vector Initialization</JobName>
 <Executable>/usr/local/gridphys/bin/lvcalc</Executable>
 <Queue>batch</Queue>
 <JobState>Completed</JobState>
 <MachineName>SMP2.emsl.pnl.gov</MachineName>
 <StartTime>1051557713</StartTime>
 <EndTime>1051558868</EndTime>
 <QuoteId>http://www.pnl.gov/SMP2#654321</QuoteId>
 <Charge units=”USD”>12.75</Charge>
 <Requested>
 <WallDuration>3600</WallDuration>
 <Processors>2</Processors>
 <Memory>1024</Memory>

 </Requested>
 </Delivered>
 <WallDuration>1155</WallDuration>
 <Processors consumptionRate=”0.78”>2</Processors>
 <Memory metric=”Max”>975</Memory>
 </Delivered>
 <TaskGroup>
 <TaskCount>2</TaskCount>
 <TaskDistribution type=”TasksPerNode”>1</TaskDistribution>
 <Task>
 <Node>node1</Node>
 <ProcessId>99353</ProcessId>
 </Task>
 <Task>
 <Node>node12</Node>
 <ProcessId>80209</ProcessId>
 </Task>
 </TaskGroup>
 </Job>
 <Job>
 <JobId>fr15n05.1234.1</JobId>
 <JobName>3-Phase Ascension</JobName>
 <Queue>batch_normal</Queue>
 <JobState>Idle</JobState>
 <MachineName>Colony.emsl.pnl.gov</MachineName>
 <Priority>1032847</Priority>
 <Hold>System</Hold>
 <StatusMessage>Insufficient funds to start job</StatusMessage>
 <Requested>
 <WallDuration>43200</WallDuration>
 </Requested>
 <TaskGroup>
 <TaskCount>1</TaskCount>
 <TaskGroupName>Master</TaskGroupName>
 <Executable>/usr/local/bin/stage-coordinator</Executable>
 <Memory>2048<Memory>
 <Resource name=”License” type=”ESSL2”>1</Resource>
 <NodeProperties>
 <Feature>Jumbo-Frame</Feature>
 </NodeProperties>
 </TaskGroup>
 <TaskGroup>
 <TaskGroupName>Slave</TaskGroupName>
 <TaskDistribution type=”Rule”>RoundRobin</TaskDistribution>
 <Executable>/usr/local/bin/stage-slave</Executable>
 <NodeCount>4</NodeCount>

 <Requested>
 <Processors group=”-1”>12</Processors>
 <Processors conj=”Or” group=”1”>16</Processors>
 <Memory>512</Memory>
 <NodeProperties>
 <Name op=”Match”>fr15n.*</Name>
 </NodeProperties>
 </Requested>
 </TaskGroup>
 </Job>
</JobGroup>

2. Conventions used in this document

2.1 Keywords

The keywords “MUST”, “MUST NOT”, “REQUIIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to
be interpreted as described in RFC2119.

2.2 Table Column Interpretations

The columns of the property tables in this document have the following meanings:

Element Name: Name of the XML element (xsd:element) see [DATATYPES]

Type: Data type defined by xsd (XML Schema Definition) as:

String xsd:string (a finite length sequence of printable characters)
 Integer xsd:integer (a signed finite length sequence of decimal digits)
 Float xsd:float (single-precision 32-bit floating point)
 Boolean xsd:boolean (consists of the literals “true” or “false”)
 DateTime xsd:int (a 32-bit unsigned long in GMT seconds since the EPOCH)

Duration xsd:int (a 32-bit unsigned long measured in seconds)

Description: Brief description of the meaning of the property

Appearance: An indication of whether the given property must appear in the

parent element. It assumes the following meanings:

 MUST This property is REQUIRED when the parent is specified.
 SHOULD This property is RECOMMENDED when the parent is specified.
 MAY This property is OPTIONAL when the parent is specified.

Compliance: An indication of the relative importance of supporting the given

property.

MUST A compliant implementation MUST support this property.
SHOULD A compliant implementation SHOULD support this property.

 MAY A compliant implementation MAY support this property.

Categories: Some properties may be categorized into one of several categories.

Letters in this column indicate that the given property can be
classified in the following property categories.

 R This property can be encompassed in a Requested element.
 D This property can be encompassed in a Delivered element.

2.3 Element Syntax Cardinality

Selected elements in the element syntax sections use regular expression wildcards with
the following meanings:

 * Zero or more occurrences
 + One or more occurrences
 ? Zero or one occurrences

The absence of one of these symbols implies exactly one occurrence.

3. The Job Model

The primary object within the job model is a job. A job can be thought of as a single
schedulable entity and will be the object normally seen in job queues.

Jobs with dependencies on other jobs may be submitted in a job group. Jobs within a job
group form a DAG (directed acyclic graph) where the nodes are jobs and the edges
represent dependencies on the status of previous jobs. A job group will consist of at least
one job. A job group can optionally specify job defaults which are a set of job properties
to be assumed by all jobs within the job group unless overridden within the job.

A job may consist of multiple tasks, which are the finest grained work unit and represent
an endpoint for executing a given process instance. For example, a job that requests 3
nodes and 4 processors will have 4 tasks, two on one node and one on each of two nodes.
Tasks may be grouped into task groups, which are logical aggregations of tasks and their

JobGroup
Job

TaskGroup

TaskGroupDefaults

Task TaskDefaults

 Task TaskDefaults

JobDefaults

TaskGroup

TaskGroupDefaults

Task TaskDefaults

 Task TaskDefaults

common properties. Submit filters, prologs, epilogs, notification scripts, etc. run once
only for each job. Whereas task groups function as logical descriptions of tasks and their
properties, they also describe the number of such tasks and the nodes that they run on. As
an example, a master task group (consisting of a single task) might ask for a node with a
MATLAB license, 2GB of memory and an internet connected network adapter while a
slave task group (consisting of 12 tasks) could be targeted for nodes with more CPU
bandwidth -- all within the same job and utilizing a common MPI ring. Tasks (and hence
taskgroups) can have different executables or environments, specify different consumable
resources or node properties. A job, therefore, may specify one or more task group. A job
that does not specify an explicit task group is considered as having a single implicit task
group. A job can optionally specify task group defaults which are a set of task group
properties to be assumed by all task groups within the job unless overridden within a task
group.

A task group may specify one or more tasks. A task group that does not specify an
explicit task is considered as having a single implicit task. A task group can optionally
specify task defaults which are a set of task properties to be assumed by all tasks within
the task group unless overridden within a task.

4. JobGroup Element

A JobGroup is an optional element that aggregates one or more interdependent jobs.
Some resource managers support the submission of job groups (multi-step jobs) and
queries on the status of an entire job group.

• A compliant implementation MAY support this element.
• A JobGroup MUST specify one or more JobGroup Properties.
• A JobGroup MUST contain one or more Jobs.
• A JobGroup MAY contain zero or more JobsDefaults.

The following illustrates this element’s syntax:

<JobGroup>
 <!-- JobGroup Properties -->+
 <Job/>+
 <JobDefaults/>?
</JobGroup>

4.1 JobGroup Properties

JobGroup Properties are properties that apply to the job group as a whole. These include
the job group id, jobs and job defaults, and other simple optional job properties.

4.1.1 Simple JobGroup Properties

Simple (unstructured) job group properties are enumerated in Table 1.

Table 1 Simple JobGroup Properties
Element Name Type Description Appearance Compliance Categories
CreationTime DateTime Date and time

that the job
group was
instantiated

MAY MAY

Description String Description of
the job group

MAY MAY

JobGroupId String Job group
identifier

MUST MUST

JobGroupName String Name of the
job group

MAY SHOULD

JobGroupState String State of the job
as a whole.
Valid states
may include
“NotQueued”,
“Unstarted”,
“Active”,
“Completed”.

MAY SHOULD

4.1.2 Job

A job group MUST contain one or more jobs.

See the next section for element details.

4.1.3 JobDefaults

A job group MAY contain zero or one job defaults.

See the next section for element details.

5. Job and JobDefaults Element

The Job and JobDefaults elements are of the same structure. A Job element encapsulates
a job and may be expressed as a standalone object. A JobDefaults element may only
appear within a JobGroup and represents the defaults to be taken by all jobs within the

job group. Job properties in Job elements override any properties found in a sibling
JobDefaults element.

• A compliant implementation MUST support the Job element.
• A compliant implementation MAY support the JobDefaults element only if it

supports the JobGroup element.
• A job MUST specify one or more Job Properties.
• One or more TaskGroup elements MAY appear at this level.
• Zero or one TaskGroupDefaults elements MAY appear at this level.

The following illustrates this element’s syntax:

<Job>
 <!-- Job Properties -->+
 <TaskGroup/>*
 <TaskGroupDefaults/>?
</Job>

5.1 Job Properties

Job Properties apply to a particular job or as default properties to all jobs. They include
the job id, job credentials, task groups, task group defaults, and other simple optional
properties.

5.1.1 Simple Job Properties

Simple (unstructured) job properties are enumerated in Table 2.

Table 2 Simple Job Properties
Element Name Type Description Appearance Compliance Categories
Application String Type of

application
such as
“Gaussian” or
“Nwchem”.

MAY MAY

Arguments String The
arguments for
the
executable.

MAY SHOULD

Charge Float The amount
charged for
the job.

MAY SHOULD

Checkpointable Boolean Can this job MAY MAY

be
checkpointed?

EligibleTime DateTime Date and time
that a job
became
eligible to
run.

MAY MAY

EndTime DateTime Date and time
that a job
ended
(independent
of success or
failure).

MAY MUST RD

Executable String Executable.
This may be
an absolute or
relative path
or a URI.*

MAY MUST

ExitCode Integer Exit code for
the job

MAY SHOULD

GlobalJobId String Globally
unique job
identifier
(possibly in
the form of a
URI).

MAY SHOULD

Hold String Hold(s) on
the job if any.

MAY SHOULD

InitialWorkingDirectory String Initial
working
directory

MAY SHOULD

Interactive Boolean Is this an
interactive
job?

MAY SHOULD

JobId String A local job
identifier
assigned to
the job by the
local resource
manager.

MUST MUST

JobName String Name of the
job

MAY SHOULD

JobState String State of the
job. Valid
states may
include

MAY MUST

“Idle”,
“Hold”,
“Running”,
“Suspended”,
“Completed”.

MachineName String Name of the
system or
cluster that
runs the job.

MAY MUST RD

NodeCount Integer Number of
nodes used by
the job.

MAY MUST RD

Partition String Name of the
partition in
which the job
should run.

MAY MAY RD

Priority Integer Current queue
priority (or
rank) for the
job.

MAY SHOULD

QualityOfService String Name of the
Quality of
Service
(QOS).

MAY SHOULD RD

Queue String Name of the
Queue (or
class) that the
job runs in.

MAY SHOULD RD

QuoteId String Identifier for
a guaranteed
charge rate
quote
obtained by
the job.

MAY MAY

ReservationId String Identifier for
a reservation
used by the
job.

MAY MAY RD

ReservationTime DateTime Date and time
that a
reservation
was placed
for the job.

MAY MAY

Restartable Boolean Can this job
be restarted?

MAY MAY

StagedTime DateTime Date and time MAY MAY

that a job was
staged to the
local resource
management
system.

StartCount Integer Number of
times the
scheduler
tried to start
the job.

MAY MAY

StartTime DateTime Date and time
that the job
started.

MAY MUST RD

StatusMessage String Natural
language
message that
can be used to
provide detail
on why a job
failed, isn’t
running, etc.

MAY SHOULD

SubmissionTime DateTime Date and time
that a job was
submitted.

MAY SHOULD

SubmitHost String FQDN of host
where the job
was submitted
from.

MAY SHOULD

Suspendable Boolean Can this job
be
suspended?

MAY MAY

SuspendDuration Integer Number of
seconds the
job was in the
“Suspended”
state.

MAY MAY

TimeCategory String This allows
the
specification
of shifts like
“PrimeTime”
for charging
purposes.

MAY MAY

Type String Type of job.
Meaning of
this extension

MAY MAY

property is
context
specific.

WallDuration Duration Number of
seconds the
job was in the
“Running”
state.

SHOULD MUST RD

* The Executable may be a script or a binary executable. If it is already on the target
system it may be referenced by an absolute or relative pathname (relative to
InitialWorkingDirectory). If it is passed with the job in a File object (see SSSRMAP), it
can be referenced by an absolute or relative URI. An absolute URI would specify a URL
where the file can be downloaded (like with wget). A relative URI is specified by
preceding an identifier by a pound sign as in <Executable>#Script</Executable> and will
be found in a File object included along with the Job object with the Script as an
identifier as in <File id=”Script”>echo hello world</File>.

5.1.1.1 OutputFile Element

The OutputFile element specifies the name of the file to which the output stream (stdout)
from the job will be written.

• This element’s character content is the name of the file. If this element is omitted
or it is empty, then an appropriate output file is auto-determined by the queuing
system.

• This element MAY have a redirect attribute of type String. A compliant
implementation SHOULD support this attribute if OutputFile is supported.
Possible values for this attribute include:

o Close closes and discards the output stream
o Append opens the output file for append
o Merge merges the output stream into the error stream

Note that when using the redirect attributes, the cumulative affect of the
ErrorFile and OutputFile directives may be order dependent.

The following is an example of an OutputFile element:

<OutputFile redirect=”Append”>~/myjob.out</OutputFile>

5.1.1.2 ErrorFile Element

The ErrorFile element specifies the name of the file to which the error stream (stderr)
from the job will be written.

• This element’s character content is the name of the file. If this element is omitted
or it is empty, then an appropriate error file is auto-determined by the queuing
system.

• This element MAY have a redirect attribute of type String. A compliant
implementation SHOULD support this attribute if ErrorFile is supported.
Possible values for this attribute include:

o Close closes and discards the error stream
o Append opens the error file for append
o Merge merges the error stream into the output stream

Note that when using the redirect attributes, the cumulative affect of the
ErrorFile and OutputFile directives may be order dependent.

The following is an example of an ErrorFile element:

<ErrorFile redirect=”MergeWithOutput”></ErrorFile>

5.1.1.3 InputFile Element

The InputFile element specifies the name of the file from which the input stream (stdin)
for the job will be read.

• This element’s character content is the name of the file. If this element is omitted
or it is empty, then an appropriate input file is auto-determined by the queuing
system.

• This element MAY have a redirect attribute of type String. A compliant
implementation SHOULD support this attribute if InputFile is supported. Possible
values for this attribute include:

o Close closes and discards the input stream

The following is an example of an InputFile element:

<InputFile redirect=”Close”></InputFile>

5.1.1.4 ResourceLimit Element

The ResourceLimit element represents a resource limit with its name and value.

• This element MUST have a name attribute of type String. A compliant
implementation MUST support the name attribute if ResourceLimit is supported.

• This element MAY have a type attribute of type String that may have the values
“Hard” or “Soft”. If the limit is enforced by the operating system, a hard limit is
one that cannot be increased once it is set while a soft limit may be increased up
to the value of the hard limit. If the type attribute is omitted, both the soft and hard
limits are set.

• This element’s character content is the resource limit’s value.

Some typical names include:

CPUTime CPU time in seconds
CoreFileSize Maximum core file size
MaxDataSize Maximum data size
MaxFileSize Maximum file size
MaxRSSSize Maximum resident set size
OpenFiles Maximum number of open files
StackSize Maximum stack size
MaxProcesses Maximum number of processes
MaxSwap Virtual memory limit
MaxMemLock Maximum locked-in-memory address space
MaxProcessors Maximum processors
MaxMemory Maximum memory
MaxDisk Maximum disk space
MaxNetwork Maximum network bandwidth
MaxFileIO Maximum file i/o

The following is an example of a ResourceLimit element:

<ResourceLimit name=”CPUTime”>1000000</ResourceLimit>

5.1.2 Credentials

Credentials are a special group of job properties that characterize an authenticated token
or id. They can be categorized in both requested and delivered forms.

Credential job properties are enumerated in Table 3.

Table 3 Credential Job Properties
Element Name Type Description Appearance Compliance Categories
ProjectId String Name of the

Project or
Charge
Account

MAY SHOULD RD

GlobalUserId String Globally
unique user
identifier. This
may be an
X.509 DN for
example.

MAY SHOULD RD

GroupId String Name of the
local group id.

MAY MAY RD

UserId String Name of the
local userid for

MAY MUST RD

the job.

5.1.3 Environment Element

The Environment element encapsulates environment variables.

• A compliant implementation SHOULD support this element.
• An Environment element MAY appear zero or one times within a given set of Job

(or TaskGroup) Properties.
• An Environment element MUST contain one or more Variable elements.

The following illustrates this element’s syntax:

<Environment>
 <Variable/>+
</Environment>

5.1.3.1 Variable Element

The Variable element represents an environment variable with its name and value.
This element MUST have a name attribute of type String. A compliant implementation
MUST support the name attribute if Variable is supported. This element’s character
content is the environment variable’s value.

The following is an example of a Variable element:

<Variable name=”PATH”>/usr/bin:/home/sssdemo</Variable>

5.1.4 NodeList Element

The NodeList element aggregates nodes.

• A compliant implementation SHOULD support this element.
• This element MAY appear zero or one times within a given set of Job Properties.
• This element MUST contain one or more Node elements.
• This element MAY be categorized as a requested or delivered property by being

encompassed by the appropriate element.

The following illustrates this element’s syntax:

<NodeList>
 <Node/>+

</NodeList>

5.1.4.1 Node Element

The Node element represents a node.

• This element is of type String.

The following is an example of a Node element:

<Node>node1</Node>

5.1.5 TaskDistribution Element

The TaskDistribution element describes how tasks are to be mapped to nodes. This
mapping may be expressed as a rule name, a task per node ratio or an arbitrary geometry.

• A compliant implementation SHOULD support this element.
• This element MAY appear zero or one times in a given set of Job (or TaskGroup)

Properties.
• This element is of type String.
• This element MAY have a type attribute of type String that provides a hint as to

the type of mapping guidance provided. It may have values including “Rule”,
“TasksPerNode”, “ProcessorsPerTask” or “Geometry”. A compliant
implementation MAY support the type attribute if the TaskDistribution element is
supported.

• It is possible to use Processors, NodeCount and TaskCount elements to specify a
set of mutually contradictory task parameters. When this occurs, components are
responsible for resolving conflicting requirements.

The following are three examples of a TaskDistribution element:

<TaskDistribution type=”TasksPerNode”>2</TaskDistribution>

<TaskDistribution type=”Rule”>RoundRobin</TaskDistribution>

<TaskDistribution type=”Geometry”>{1,4}{2}{3,5}</TaskDistribution>

5.1.6 Dependency Element

The Dependency element allows a job’s execution to depend on the status of other jobs.
In a job group (multi-step job), some jobs may delay execution until the failure or success
of other jobs creating in general a Directed Acyclic Graph relationship between the jobs.

This element’s content is of type String and represents the JobId that the current job is
dependent upon. Since a job may have two or more dependencies, this element may
appear more than once in a given job scope. A compliant implementation SHOULD
support this element if job groups are supported. This element MAY have a type attribute
of type String that indicates the basis for determining when the current job executes in
relation to the specified job. The default (if the type attribute is omitted) is to allow the
current job to run if the specified job completes successfully (this is specified explicitly
with a value of “OnSuccess”). The type attribute MAY be present and have values
including “OnSuccess” and “OnFailure”. A compliant implementation MUST support
this attribute if this element is supported.

• A compliant implementation SHOULD support this element.
• This element MAY appear zero or more times in a given set of Job (or

TaskGroup) Properties.
• This element is of type String and contains the JobId that the current job is

dependent upon.
• This element MAY have a type attribute of type String that indicates the basis for

determining when the current job executes in relation to the specified job. A
compliant implementation MUST support this attribute if this element is
supported.
Possible values for this attribute include:

o OnSuccess this job should run after the referenced job only if it
completes successfully (this is the default if the type attribute is omitted)

o OnFailure this job should run after the referenced job only if it fails
o OnExit this job should run after the referenced job exits

• If the type attribute is equal to “OnExit”, this element MAY have a code attribute
of type Integer that indicates the exit code that will trigger this job to run. If the
code attribute is omitted, then the current job should run after the referenced job
for any exit status.

The following is an example of a Dependency element:

<Dependency type=”OnSuccess”>PBS.1234.0</Dependency>

5.1.7 Consumable Resources

Consumable Resources are a special group of properties that can have additional
attributes and can be used in multiple contexts. In general a consumable resource is a
resource that can be consumed in a measurable quantity.

• A consumable resource MAY have a dedicated attribute of type Boolean which if
set to True indicates that this resource should be dedicated. A dedicated resource
is prevented from being shared by other work requests. This may be to avoid
conflict introduced when the resource is shared, for confidentiality or any other
reason. A compliant implementation MAY support this attribute.

• A consumable resource MAY have a units attribute that is of type String that
specifies the units by which it is being measured. If this attribute is omitted, a
default unit is implied. A compliant implementation MAY support this attribute if
the element is supported.

• A consumable resource MAY have a metric attribute that is of type String that
specifies the type of measurement being described. For example, the measurement
may be a Total, an Average, a Min or a Max. A compliant implementation MAY
support this attribute if the element is supported.

• A consumable resource MAY have a wallDuration attribute of type Duration that
indicates the amount of time for which that resource was used. This need only be
specified if the resource was used for a different amount of time than the
wallDuration for the job. A compliant implementation MAY support this attribute
if the element is supported.

• A consumable resource MAY have a consumptionRate attribute of type Float that
indicates the average percentage that a resource was used over its wallDuration.
For example, an overbooked SMP running 100 jobs across 32 processors may
wish to scale the usage and charge by the average fraction of processor usage
actually delivered. A compliant implementation MAY support this attribute if the
element is supported.

• A consumable resource MAY have a dynamic attribute of type Boolean that
indicates whether the resource allocated for this job should be allowed to grow or
shrink dynamically. For example, if processors is specified with dynamic equal to
“True”, the job may be dynamically allocated more processors as they become
available. The growth bounds can be indicated via the op attribute which is
inherited when a consumable resource element is encapsulated within a Requested
element. A compliant implementation MAY support this attribute if the element is
supported.

A list of simple consumable resources is listed in Table 4.

Table 4 Simple Consumable Resources
Element Name Type Description Appearance Compliance Categories
Disk Float Amount of

disk.
MAY SHOULD RD

Memory Float Amount of
memory.

MAY SHOULD RD

Network Float Amount of
network.

MAY MAY RD

Processors Integer Number of
processors.

MAY MUST RD

Swap Float Amount of
virtual
memory.

MAY MAY RD

The following are two examples for specifying a consumable resource:

<Memory metric=”Max” units=”GB”>483</Memory>

<Processors wallDuration=”1234” consumptionRate=”0.63”>4</Processors>

5.1.8 Resource Element

In addition to the consumable resources enumerated in the above table, an extensible
consumable resource is defined by the Resource element.

• A compliant implementation SHOULD support this element.
• This element MAY appear zero or more times within a given set of job (or task

group) properties.
• Like the other consumable resources, this property MAY be categorized as a

requested or delivered property by being encompassed in the appropriate element.
• This element is of type Float.
• This element shares the same properties and attributes as the other

consumable resources but it requires an additional name (and optional type)
attribute to describe it.

• It MUST have a name attribute of type String that indicates the type of
consumable resource being measured. A compliant implementation MUST
support this attribute if the element is supported.

• It MAY have a type attribute of type String that distinguishes it within a general
resource class. A compliant implementation SHOULD support this attribute if the
element is supported.

The following are two examples for specifying a Resource element:

<Resource name=”License” type=”MATLAB”>1</Resource>

<Resource name=”Telescope” type=”Zoom2000” wallDuration=”750”
metric=”KX”>10</Resource>

5.1.9 NodeProperties Element

The NodeProperties element encapsulates node properties required of nodes selected for
the job (or task group) to run on.

• A compliant implementation MAY support this element.
• This element MAY appear zero or one times within a given set of Job (or

TaskGroup) Properties.
• This element MUST contain one or more Node Properties.

The following illustrates this element’s syntax:

<NodeProperties>
 <!— (ConsumableResources | Feature | Name) -->+
</NodeProperties>

5.1.9.1 Node Properties

Node Properties specify the resources or properties that are required of a node that runs a
task, as opposed to the resources or properties you desire for a task . For example, node
properties can be used to specify that a task should only run on nodes with a certain
number of cpu’s, even if its associated job will not use all of these nodes and will share
them with other jobs.

5.1.9.1.1 Consumable Resources

Any of the Consumable Resources described above may be included as node properties.

5.1.9.1.2 Other Optional Simple Node Properties

Other simple (unstructured) node properties are enumerated in Table 5.

Table 5 Optional Simple Node Properties
Element Name Type Description Appearance Compliance Categories
Feature String Arbitrary

named
feature of
the node.

MAY SHOULD

Name String Node name
or pattern.

MAY MAY

5.1.10 Extension Element

The Extension element provides a means to pass extensible properties with the job object.
Some applications may find it easier to use a named extension property than discover and
handle elements they do not understand or anticipate by name.

• A compliant implementation MAY support this element.
• This element MUST have a name attribute of type String that gives the extension

property’s name. A compliant implementation MUST support this attribute if this
element is supported.

• This element MAY have a type attribute of type String that characterizes the
context within which the property should be understood. A compliant
implementation SHOULD support this attribute if this element is supported.

• This element’s character content, which is of type String, is the extension
property’s value.

The following is an example of an Extension element:

<Extension type=”Scheduler” name=”Restartable”>true</Extension>

5.1.11 TaskGroup

A job MAY specify one or more task groups.

See the next section for element details.

5.1.12 TaskGroupDefaults

A job MAY specify zero or more task group defaults.

See the next section for element details.

6. TaskGroup and TaskGroupDefaults Element

The TaskGroup and TaskGroupDefaults elements have the same structure. A TaskGroup
element aggregates tasks. A TaskGroupDefaults element may only appear within a Job
(or JobDefaults) and represents the defaults to be taken by all task groups within the job.
Task group properties in TaskGroup elements override any properties found in a sibling
TaskGroupDefaults element.

• A compliant implementation MAY support the TaskGroup element.
• A compliant implementation MAY support the TaskGroupDefaults element.
• A task group MUST specify one or more TaskGroup Properties.
• One or more Task elements MAY appear at this level.
• Zero or one TaskDefaults elements MAY appear at this level.

The following illustrates this element’s syntax:

<TaskGroup>
 <!-- TaskGroup Properties -->+
 <!-- Job Properties -->*
 <Task>+

 <TaskDefaults>?
</TaskGroup>

6.1 TaskGroup Properties

TaskGroup Properties apply to a particular task group or as default properties to
encompassed task groups. These properties include the task group id, its tasks, task
defaults, and other simple task group properties.

6.1.1 Simple TaskGroup Properties

Simple (unstructured) task group properties are enumerated in Table 6.

Table 6 Simple TaskGroup Properties
Element Name Type Description Appearance Compliance Categories
TaskCount Integer Number of

tasks in this
taskgroup

MAY MUST

TaskGroupId String A task
group
identifier
unique
within the
job.

MAY MAY

TaskGroupName String A task
group name
(such as
“Master”).

MAY SHOULD

6.1.2 Task

A task group MAY specify zero or more tasks.

See the next section for element details.

6.1.3 TaskDefaults

A task group MAY specify zero or more task defaults.

See the next section for element details.

7. Task and TaskDefaults Element

The Task and TaskDefaults elements have the same structure. A Task element contains
information specific to a task (like the process id or the host it ran on). A TaskDefaults
element may only appear within a TaskGroup (or TaskGroupDefaults) element and
represents the defaults for all tasks within the task group. Task properties in Task
elements override any properties found in a sibling TaskDefaults element.

• A compliant implementation MAY support the TaskGroup element.
• A compliant implementation MAY support the TaskGroupDefaults element.
• A task group MUST specify one or more TaskGroup Properties.
• One or more Task elements MAY appear at this level.
• Zero or one TaskDefaults elements MAY appear at this level.

The following illustrates this element’s syntax:

<Task>
 <!-- Task Properties -->+
 <!-- Job Properties -->*
</Task>

7.1 Task Properties

Task Properties are properties that apply to a particular task or as default properties to
encompassed tasks. These properties include the task id and other task properties.

7.1.1 Simple Task Properties

Simple (unstructured) task properties are enumerated in Table 7.

Table 7 Simple Task Properties
Element Name Type Description Appearance Compliance Categories
Node String Name of

the node
this task
ran on.

MAY MUST

SessionId Integer Session id
for the task
group or
job.

MAY MAY

TaskId String A task
identifier
unique

MAY MAY

within the
taskgroup.

8. Property Categories

Certain properties need to be classified as being in a particular category. This is done
when it is necessary to distinguish between a property that is requested versus a property
that was delivered. When no such distinction is necessary, it is recommended that the
property not be enveloped in one of these elements. In general, a property should be
enveloped in a category element only if it is expected that the property will need to be
attributed to more than one property category, or if it needs to make use of some of the
special attributes inherited from the category.

8.1 Requested Element

A requested property reflects properties as they were requested. A disparity might occur
between the requested value and the value delivered if a preference was expressed, if
multiple options were specified, or if ranges or pattern matching was specified.

• A compliant implementation SHOULD support this element.

The following illustrates the syntax of this element:

<Requested>
 <!-- Requested Properties -->+
</Requested>

The following describes the attributes and elements for the example above:

/Requested
 This element is used to encapsulate requested properties.
/Requested/<Requested Property>
 Requested properties appear at this level.

Requested Properties inherit some additional attributes.

• A requested property MAY have an op attribute of type String that indicates a
conditional operation on the value. A compliant implementation SHOULD
support this attribute. Valid values for the op attribute include “EQ” meaning
equals (which is the default), “NE” meaning not equal, “LT” meaning less than,
“GT” meaning greater than, “LE” meaning less than or equal to, “GE” meaning
greater than or equal to, “Match” which implies the value is a pattern to be
matched.

• A requested property MAY have a conj attribute of type String that indicates a
conjunctive relationship with the previous element. A compliant implementation
MAY support this attribute. Valid values for the conj attribute include “And”
(which is the default), “Or”, “Nand” meaning and not, and “Nor” meaning or not.

• A requested property MAY have a group attribute of type Integer that indicates
expression grouping and operator precedence much like parenthetical groupings.
A compliant implementation MAY support this attribute. A positive grouping
indicates the number of nested expressions being opened with the property while
a negative grouping indicates the number of nested expressions being closed with
the property.

• A requested property MAY have a preference attribute of type Integer that
indicates a preference for the property along with a weight (the weights are taken
as a ratio to the sum of all weights in the same group). A compliant
implementation MAY support this attribute. If a group of positive valued
preference alternatives are specified, at least one of the preferences must be
satisfied for the job to run. If a group of negative valued preferences are specified,
the preferences will try to be met according to their weights but the job will still
run even if it can’t satisfy any of the preferred properties. (Weight ranking can be
removed by making all weights the same value (1 or -1 for example).

• A requested property MAY have a performanceFactor attribute of type Float that
provides a hint to the scheduler of what performance tradeoffs to make in terms of
resources and start time. A compliant implementation MAY support this attribute.

The following are four examples of using Requested Properties:

<Requested>

<Processors op=”GE”>8</Processors>
<Processors op=”LE”>16</Processors>
<WallDuration>3600</WallDuration>

</Requested>

<Requested>
 <NodeCount>1</NodeCount>
 <NodeProperties>
 <Name op=”Match”>fr15.*</Name>
 </NodeProperties>
<Requested>

<Requested>
 <UserId group=”1”>scottmo</UserId>
 <AccountName group=”-1”>mscfops</AccountName>
 <UserId conj=”Or” group=”1”>monkeyboy</UserId>
 <AccountName group=”-1”>junglehunt</AccountName>
</Requested>

<Requested>

 <Memory preference=”2”>1024</Memory>
 <Memory preference=”1”>512</Memory>
</Requested>

8.2 Delivered Element

A delivered property reflects properties as they were actually utilized, realized or
consumed. It reflects the actual amounts or values that are used, as opposed to a limit,
choice or pattern as may be the case with a requested property.

• A compliant implementation SHOULD support this element.

The following illustrates the syntax of this element:

<Delivered>
 <!-- Delivered Properties -->+
</Delivered>

The following describes the attributes and elements for the example above:

/Delivered
 This element is used to encapsulate delivered properties.
/Delivered/<Delivered Property>
 Delivered properties appear at this level.

Delivered Properties inherit some additional attributes.

• A delivered property MAY have a group attribute of type Integer that indicates
expression grouping and operator precedence much like parenthetical groupings.
A compliant implementation MAY support this attribute. A positive grouping
indicates the number of nested expressions being opened with the property while
a negative grouping indicates the number of nested expressions being closed with
the property. The purpose of this attribute would be to logically group delivered
properties if they were used in certain aggregations (like a job that spanned
machines).

The following are the same four examples distinguishing the delivered amounts and
values:

<Delivered>

<Processors>12</Processors>
<WallDuration>1234</WallDuration>

</Delivered>

<Delivered>

 <NodeList>
 <Node>fr15n03</Node>
 </NodeList>
</Delivered>

<Delivered>
 <UserId>scottmo</UserId>
 <AccountName>mscfops</AccountName>
</Delivered>

<Delivered>
 <Memory>1024</Memory>
</Delivered>

9. AwarenessPolicy Attribute

A word or two should be said about compatibility mechanisms. With all the leeway in the
specification with regard to implementing various portions of the specification, problems
might arise if an implementation simply ignores a portion of a job specification that is
critical to the job function in certain contexts. Given this situation, it might be desirable
in some circumstances for jobs to be rejected by sites that fail to fully support that job’s
element or attributes. At other times, it might be desirable for a job to run, using a best-
effort approach to supporting unimplemented features. Consequently, we define an
awarenessPolicy attribute which can be added as an optional attribute to the Job element
or any other containment or property element to indicate how the property (or the default
action for the elements that the containment element encloses) must react when the
implementation does not understand an element or attribute.

An awareness policy of “Reject” will cause the server to return a failure if it receives a
client request in which it does not support an associated element name or attribute name
or value. It is reasonable for an implementation to ignore (not even look for) an element
or attribute that would not be critical to its function as long as ignoring this attribute or
element would not cause an incorrect result. However, any element or attribute that was
present that would be expected to be handled in a manner that the implementation does
not support must result in a failure.

An awareness policy of “Warn” will accept the misunderstood element or attribute and
continue to process the job object on a best effort basis. However a warning MUST be
sent (if possible) to the requestor enumerating the elements and attributes that are not
understood.

An awareness policy of “Ignore” will accept the unsupported element or attribute and
continue to process the job object on a best effort basis. The action could be to simply
ignore the attribute.

• This name of this attribute is awarenessPolicy.
• This attribute is of type String.
• This attribute can have values of “Reject”, “Warn” or “Ignore”.
• A compliant implementation MAY support this attribute.
• An implementation that does not support an attribute MUST reject any job object

which contains elements or attributes that it does not support. Furthermore, it
SHOULD return a message to the requestor with an indication of the element or
attribute name it did not understand.

• This attribute MAY be present in a property or containment element.
• If an implementation does support the attribute, but it is absent, the default value

of “Reject” is implied.
• Individual elements in the job object may override the containing object’s

awareness policy default by including this attribute. For example, a job might
specify an awarenessPolicy of “Reject” at its root (the Job element) but may want
to allow a particular subset of elements or attributes to be ignored if not
understood. Conversely, a job with a default awarenessPolicy of “Ignore” might
want to classify a subset of its optional elements as “Reject” if they are
indispensible to its correct interpretation. An implementation can opt to check or
not check for this attribute at any level it wants but must assume a “Reject” policy
for any elements it does not check.

10. References

ISO 8601

ISO (International Organization for Standardization). Representations of
dates and times, 1988-06-15. http://www.iso.ch/markete/8601.pdf

DATATYPES

XML Schema Part 2: Datatypes. Recommendation, 02 MAY 2001.
http://www.w3.org/TR/xmlschema-2/

Appendix A

Units of Measure Abbreviations

Abbreviation Definition Quantity
B byte 1 byte

KB Kilobyte 2^10 bytes
MB Megabyte 2^20 bytes
GB Gigabyte 2^30 bytes
TB Terabyte 2^40 bytes
PB Petabyte 2^50 bytes
EB Exabyte 2^60 bytes
ZB Zettabyte 2^70 bytes
YB Yottabyte 2^80 bytes
NB Nonabyte 2^90 bytes
DB Doggabyte 2^100 bytes

